SSIM-Inspired Quality Assessment, Compression, and Processing for Visual Communications

نویسنده

  • Abdul Rehman
چکیده

Objective Image and Video Quality Assessment (I/VQA) measures predict image/video quality as perceived by human beings the ultimate consumers of visual data. Existing research in the area is mainly limited to benchmarking and monitoring of visual data. The use of I/VQA measures in the design and optimization of image/video processing algorithms and systems is more desirable, challenging and fruitful but has not been well explored. Among the recently proposed objective I/VQA approaches, the structural similarity (SSIM) index and its variants have emerged as promising measures that show superior performance as compared to the widely used mean squared error (MSE) and are computationally simple compared with other state-of-the-art perceptual quality measures. In addition, SSIM has a number of desirable mathematical properties for optimization tasks. The goal of this research is to break the tradition of using MSE as the optimization criterion for image and video processing algorithms. We tackle several important problems in visual communication applications by exploiting SSIM-inspired design and optimization to achieve significantly better performance. Firstly, the original SSIM is a Full-Reference IQA (FR-IQA) measure that requires access to the original reference image, making it impractical in many visual communication applications. We propose a general purpose Reduced-Reference IQA (RR-IQA) method that can estimate SSIM with high accuracy with the help of a small number of RR features extracted from the original image. Furthermore, we introduce and demonstrate the novel idea of partially repairing an image using RR features. Secondly, image processing algorithms such as image de-noising and image super-resolution are required at various stages of visual communication systems, starting from image acquisition to image display at the receiver. We incorporate SSIM into the framework of sparse signal representation and non-local means methods and demonstrate improved performance in image de-noising and super-resolution. Thirdly, we incorporate SSIM into the framework of perceptual video compression. We propose an SSIM-based rate-distortion optimization scheme and an SSIM-inspired divisive optimization method that transforms the DCT domain frame residuals to a perceptually uniform space. Both approaches demonstrate the potential to largely improve the rate-distortion performance of state-of-the-art video codecs. Finally, in

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

UW CENTER FOR PATTERN ANALYSIS AND MACHINE INTELLIGENCE GRADUATE SEMINAR SERIES Structural Similarity as the Optimization Criterion for Visual Communications

Despite the ubiquitous usage in a wide variety of signal processing applications, the mean squared error (MSE) appears to be a poor measure when perceived image quality is our major concern. It is widely employed mostly because of its simplicity and good mathematical properties for optimization purposes. Among the recently proposed IQA approaches, the structural similarity (SSIM) index has emer...

متن کامل

Analysis of SSIM based Quality Assessment across Color Channels of Images

Advances in imaging and computing hardware have led to an explosion in the use of color images in image processing, graphics and computer vision applications across various domains such as medical imaging, satellite imagery, document analysis and biometrics to name a few. However, these images are subjected to a wide variety of distortions during its acquisition, subsequent compression, transmi...

متن کامل

No-reference quality assessment for DCT-based compressed image

A blind/no-reference (NR) method is proposed in this paper for image quality assessment (IQA) of the images compressed in discrete cosine transform (DCT) domain. When an image is measured by structural similarity (SSIM), two variances, i.e. mean intensity and variance of the image, are used as features. However, the parameters of original copies are actually unavailable in NR applications; henc...

متن کامل

Image Quality Assessment Using Gradient-weighted Structural Similarity

Digital images are subject to a wide variety of distortions during image processing application, and it is necessary to develop objective image quality metric to evaluate the degradation automatically. Images are prepared for human eyes so that the assessment result must be consistent with human visual effect. Structure Similarity (SSIM), a well-known objective image quality assessment, is prop...

متن کامل

Performance Evaluation of Structural Similarity Index Metric in Different Colorspaces for HVS Based Assessment of Quality of Colour Images

The evaluation of visual quality of color images has become very important and challenging task due to explosion of multimedia and graphics content on internet. An image exhibits loss in color information due to introduction of noise, blur, blocking artefacts, channel distortion and also during lossy compression. The primary goal of Image Quality Metric (IQM) is to measure emergence of such dis...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013